112 research outputs found

    Within-guild dietary discrimination from 3-D textural analysis of tooth microwear in insectivorous mammals

    Get PDF
    Resource exploitation and competition for food are important selective pressures in animal evolution. A number of recent investigations have focused on linkages between diversification, trophic morphology and diet in bats, partly because their roosting habits mean that for many bat species diet can be quantified relatively easily through faecal analysis. Dietary analysis in mammals is otherwise invasive, complicated, time consuming and expensive. Here we present evidence from insectivorous bats that analysis of three-dimensional (3-D) textures of tooth microwear using International Organization for Standardization (ISO) roughness parameters derived from sub-micron surface data provides an additional, powerful tool for investigation of trophic resource exploitation in mammals. Our approach, like scale-sensitive fractal analysis, offers considerable advantages over twodimensional (2-D) methods of microwear analysis, including improvements in robustness, repeatability and comparability of studies. Our results constitute the first analysis of microwear textures in carnivorous mammals based on ISO roughness parameters. They demonstrate that the method is capable of dietary discrimination, even between cryptic species with subtly different diets within trophic guilds, and even when sample sizes are small. We find significant differences in microwear textures between insectivore species whose diet contains different proportions of ā€˜hardā€™ prey (such as beetles) and ā€˜softā€™ prey (such as moths), and multivariate analyses are able to distinguish between species with different diets based solely on their tooth microwear textures. Our results show that, compared with previous 2-D analyses of microwear in bats, ISO roughness parameters provide a much more sophisticated characterization of the nature of microwear surfaces and can yield more robust and subtle dietary discrimination. ISO-based textural analysis of tooth microwear thus has a useful role to play, complementing existing approaches, in trophic analysis of mammals, both extant and extinct

    Experimental analysis of organ decay and pH gradients within a carcass and the implications for phosphatization of soft tissues

    Get PDF
    Replacement of soft tissues by calcium phosphate can yield spectacular fossils. However, in the fossil record, the phosphatization of internal organs is highly selective; some internal organs, such as muscles, stomachs, and intestines, appear to preferentially phosphatize while other organs seldom phosphatize. The reasons for this are unclear but one hypothesis is that, during decay, organs create distinct chemical microenvironments and only some fall below the critical pH threshold for mineralization to occur (i.e. below the carbonic acid dissociation constant: pH 6.38). Here, we present a novel investigation using microelectrodes that record dynamic spatial and temporal pH gradients inside organs within a fish carcass in real time. Our experiments demonstrate that within a decaying fish carcass, organ-specific microenvironments are not generated. Rather, a pervasive pH environment forms within the body cavity which persists until integumentary failure. With no evidence to support the development of organ-specific microenvironments during decay our data suggest other factors must control differential organ phosphatization. We propose, that when conditions are amenable, it is tissue biochemistry that plays an important role in selective phosphatization. Tissues with high phosphate content (and those rich in collagen) are most likely to phosphatize. Internal organs that typically have lower tissue-bound phosphate, including the integuments of the stomach and intestine, may require other sources of phosphate such as ingested phosphate-rich organic matter. If tissue biochemistry is the driver behind selective phosphatization, this may provide insights into other highly selective modes of soft-tissue preservation (e.g. pyritization)

    ORIENTATION AND ANATOMICAL NOTATION IN CONODONTS

    Get PDF

    Three-dimensional dental microwear in type-Maastrichtian mosasaur teeth (Reptilia, Squamata)

    Get PDF
    Mosasaurs (Squamata, Mosasauridae) were large aquatic reptiles from the Late Cretaceous that filled a range of ecological niches within marine ecosystems. The type-Maastrichtian strata (68ā€“66 Ma) of the Netherlands and Belgium preserve remains of five species that seemed to have performed different ecological roles (carnivores, piscivores, durophages). However, many interpretations of mosasaur diet and niche partitioning are based on qualitative types of evidence that are difficult to test explicitly. Here, we apply three-dimensional dental microwear texture analysis (DMTA) to provide quantitative dietary constraints for type-Maastrichtian mosasaurs, and to assess levels of niche partitioning between taxa. DMTA indicates that these mosasaurs did not exhibit neatly defined diets or strict dietary partitioning. Instead, we identify three broad groups: (i) mosasaurs Carinodens belgicus and Plioplatecarpus marshi plotting in the space of modern reptiles that are predominantly piscivorous and/or consume harder invertebrate prey, (ii) Prognathodon saturator and Prognathodon sectorius overlapping with extant reptiles that consume larger amounts of softer invertebrate prey items, and (iii) Mosasaurus hoffmanni spanning a larger plot area in terms of dietary constraints. The clear divide between the aforementioned first two groups in texture-dietary space indicates that, despite our small sample sizes, this method shows the potential of DMTA to test hypotheses and provide quantitative constraints on mosasaur diets and ecological roles

    Systematic analysis of exceptionally preserved fossils: correlated patterns of decay and preservation

    Get PDF
    From Wiley via Jisc Publications RouterHistory: received 2020-12-18, accepted 2021-06-29, pub-electronic 2021-08-24Article version: VoRPublication status: PublishedFunder: Natural Environmental Research Council; Grant(s): NE/E015336/1, NE/K004557/1Abstract: The fossil record of nonā€biomineralized animals and tissues provides important insight into deepā€time evolutionary events. Interpretation of these highly variable remains requires an understanding of how both decay and preservation lead to fossilization. Here we establish a quantitative approach that unites data from decay experiments of extant taxa with preservation mode of fossils, allowing evaluation of both information loss and information retention, and their interaction, in nonā€biomineralized fossils. We illustrate our approach using fossil data from two LagerstƤtten with distinct taphonomic regimes, one characterized by phosphatization, and the other by pyritization of nonā€biomineralized tissues. This demonstrates that frequency of occurrence of characters in fossil taxa is significantly correlated with sequences of character decay observed in extant comparator organisms, and that decay prone and decay resistant characters have distinct preservation modes; the former are mineralized and the latter are organically preserved. The methods and principles applied here to nonā€biomineralized vertebrates are applicable to other exceptionallyā€preserved fossils and allow for identification of systematic biases in fossil specimen completeness, character retention and the mode of their preservation. Furthermore, our analyses validates experimental decay in supporting the interpretation of anatomy in nonā€biomineralized fossils

    Experimental analysis of soft-tissue fossilization ā€“ opening the black box

    Get PDF
    Taphonomic experiments provide important insights into fossils that preserve the remains of decayā€prone soft tissues, tissues that are usually degraded and lost prior to fossilization. These fossils are among the most scientifically valuable evidence of ancient life on Earth, giving us a view into the past that is much less biased and incomplete than the picture provided by skeletal remains alone. Although the value of taphonomic experiments is beyond doubt, a lack of clarity regarding their purpose and limitations, and ambiguity in the use of terminology, are hampering progress. Here we distinguish between processes that promote information retention and those that promote information loss, in order to clarify the distinction between fossilization and preservation. Recognizing distinct processes of decay, mineralization and maturation, the sequence in which they act, and the potential for interactions, has important consequences for analysis of fossils, and for the design of taphonomic experiments. The purpose of wellā€designed taphonomic experiments is generally to understand decay, maturation and preservation individually, thus limiting the number of variables involved. Much work remains to be done, but these methodologically reductionist foundations will allow researchers to build towards more complex taphonomic experiments and a more holistic understanding and analysis of the interactions between decay, maturation and preservation in the fossilization of nonā€biomineralized remains. Our focus must remain on the key issue of understanding what exceptionally preserved fossils reveal about the history of biodiversity and evolution, rather than on debating the scope and value of an experimental approach

    Experimental analysis of soft-tissue fossilization: opening the black box

    Get PDF
    Taphonomic experiments provide important insights into fossils that preserve the remains of decay-prone soft tissues, tissues that are usually degraded and lost prior to fossilization. These fossils are among the most scientifically valuable evidence of ancient life on Earth, giving us a view into the past that is much less biased and incomplete than the picture provided by skeletal remains alone. Although the value of taphonomic experiments is beyond doubt, a lack of clarity regarding their purpose and limitations, and ambiguity in the use of terminology, are hampering progress. Here we distinguish between processes that promote information retention and those that promote information loss, in order to clarify the distinction between fossilization and preservation. Recognizing distinct processes of decay, mineralization and maturation, the sequence in which they act, and the potential for interactions, has important consequences for analysis of fossils, and for the design of taphonomic experiments. The purpose of well-designed taphonomic experiments is generally to understand decay, maturation and preservation individually, thus limiting the number of variables involved. Much work remains to be done, but these methodologically reductionist foundations will allow researchers to build towards more complex taphonomic experiments and a more holistic understanding and analysis of the interactions between decay, maturation and preservation in the fossilization of non-biomineralized remains. Our focus must remain on the key issue of understanding what exceptionally preserved fossils reveal about the history of biodiversity and evolution, rather than on debating the scope and value of an experimental approach
    • ā€¦
    corecore